

NRG4CAST FP7-2012-NMP-ENV-ENERGY-ICT-EeB Contract no.: 600074 www.nrg4cast.org

NRG4CAST

Deliverable D6.5

Final Integrated NRG4CAST Toolkit (Final Prototype)

Editor:	Ioannis Chamodrakas (SLG)
Author(s):	Ioannis Chamodrakas (SLG), Tatsiana Hubina, Diego Sanmartino (CSI), Simon Mokorel (ENVIGENCE), Steffen Nienke (FIR), Caterina Calefato (IREN), Klemen Kenda (JSI), Irene Koronaki (NTUA)
Reviewers:	Klemen Kenda (JSI), Andrej Borštnik (JSI), George Markogiannakis (CRES)
Deliverable Nature:	P
Dissemination Level: (Confidentiality) ¹	PU
Contractual Delivery Date:	October 2015
Actual Delivery Date:	October 2015
Suggested Readers:	Energy monitoring/ forecasting software developers, web designers, stakeholders, energy managers, energy providers
Version:	1.0
Keywords:	Integrated prototype, software component integration, single-sign on, interface design

¹ Please indicate the dissemination level using one of the following codes:

[•] PU = Public • PP = Restricted to other programme participants (including the Commission Services) • RE = Restricted to a group specified by the consortium (including the Commission Services) • CO = Confidential, only for members of the consortium (including the Commission Services) • CO = Confidential, only for members of the consortium (including the Commission Services) • Restreint UE = Classified with the classification level "Restreint UE" according to Commission Decision 2001/844 and amendments • Confidentiel UE = Classified with the mention of the classification level "Confidentiel UE" according to Commission Decision 2001/844 and amendments • Secret UE = Classified with the mention of the classification level "Secret UE" according to Commission Decision 2001/844 and amendments

Disclaimer

This document contains material, which is the copyright of certain NRG4CAST consortium parties, and may not be reproduced or copied without permission.

In case of Public (PU):

All NRG4CAST consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All NRG4CAST consortium parties have agreed to make this document available on request to other framework programme participants.

In case of Restricted to Group (RE):

The information contained in this document is the proprietary confidential information of the NRG4CAST consortium and may not be disclosed except in accordance with the consortium agreement. However, all NRG4CAST consortium parties have agreed to make this document available to <group> / <purpose>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of the NRG4CAST consortium and may not be disclosed except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the proprietor of that information.

Neither the NRG4CAST consortium as a whole, nor a certain party of the NRG4CAST consortium warrant that the information contained in this document is capable of use, or that use of the information is free from risk, and accept no liability for loss or damage suffered by any person using this information.

Copyright notice

© 2012-2015 Participants in project NRG4Cast

Executive Summary

Deliverable D6.5 has focused on the rollout of the Final Integrated NRG4CAST Toolkit as an integrated Decision Support System. This process included the integration of software components developed in the 3rd year of the project with the building blocks of the previous version of the Toolkit which have been enhanced according to the requirements of the pilot scenarios.

One of the main challenges faced was the design and implementation of seamless Authentication & Authorization of the users to the individual components in an integrated way, according to well-defined roles relevant to the pilot requirements. In this context, the Central Authentication Service Single Sign On solution is used by all the software components in order to authenticate the users against a specially designed and deployed User & Role database. Each component handles authorization autonomously through the use of an appropriate REST API for User & Role information retrieval.

Furthermore, much work has been also done on the update and refinement of the pilot scenarios supported by the Toolkit. Many hundreds of new sensors pertaining to a plethora of NRG4CAST energy consumption objects residing in the consumption centres of the different pilots have been integrated for the final rollout. Reporting and forecasting functionalities have been further specified and upgraded.

Last but not least, the Final Integrated NRG4CAST Toolkit supports the definition and configuration of virtual consumption centres which group together objects and their sensors from different pilot context in order to support the integrated city scenario.

Table of Contents

Executive Summary
Table of Contents
List of Figures
List of Tables
Abbreviations7
1 Introduction
2 NRG4CAST Toolkit Architecture
3 Single Sign-On and Role-based Access Control 10
3.1 Single Sign On 10
3.1.1 Central Authentication Service 11
3.2 Role-based Access Control 11
3.2.1 User/Role Database 11
3.2.2 Role REST API
3.2.3 Single Sign On to the NRG4CAST monitoring web front-end
4 User & Role Management Component 15
5 Sensor Registry / Consumption Centre Configuration Component
6 Report Management & Visualization / Real-time Visualization components
7 Knowledge Formalization component 22
8 Prediction Manager
9 Knowledge-driven Planning & Optimization component
10 Situational Awareness component
11 NRG4CAST Final Integrated Prototype Pilot Contexts
11.1 Miren pilot
11.2 FIR Pilot
11.3 NTUA pilot
11.4 Turin Pilot
11.5 Iren Pilot
11.6 Virtual Integrated Pilot
12 Conclusions
References

List of Figures

Figure 1. NRG4CAST Toolkit Architecture [1]
Figure 2. NRG4CAST Single Sign On Web Page 10
Figure 3. CAS Authentication flow (adopted from CAS documentation) 11
Figure 4. User/Role Database
Figure 5. Role REST API JSON response
Figure 6. NRG4CAST Toolkit welcome page, available applications for the "super user" profile
Figure 7. NRG4CAST Toolkit welcome page, available application for the fir-guest profile
Figure 8. Report Management & Visualization and Real time Visualization GUI, basic user fir-guest (all the
GUI functions except for the Advanced Search and SQL query tool
Figure 9. User & Role Management GUI 15
Figure 10. Sensor Registry & Consumption Centre Configuration Component
Figure 11. Visualisation of alerts in real time, Turin pilot
Figure 12. Georeferenced alerts in real time, NTUA pilot example
Figure 13. NRG4CAST Toolkit, Turin Pilot, visualisation of historical alerts
Figure 14. Hierarchical search tool, NTUA pilot example, objects visualisation
Figure 15. Georeferenced objects visualised on the map, NTUA pilot example
Figure 16. Advanced search SQL query tool, direct connection with the NRG4CAST monitoring database 21
Figure 17. NRG4CAST web front-end – Miren case, showing the realtime consumption and comparable to
real time traffic
Figure 18. NRG4CAST web front-end – Miren case, showing the last data from the street light sensors 27
Figure 19. NRG4CAST web front-end – Miren case, showing the real time data for vehicles circulation on the
selected street
Figure 20. NTUA Pilot's scope
Figure 21. NTUA Pilot's systems' topology 29
Figure 22. NRG4CAST web fron-end - NTUA Pilot, showing the demand from Antochis Ylikon Building during
summer
Figure 23. A set of savings reports, Turin pilot, NRG4CAST Toolkit
Figure 24. NRG4CAST web tool - Reggio Emilia Pilot, showing the Thermal Energy Production calculated
using the prediction model
Figure 25. NRG4CAST web tool – Campus NUBI Pilot, showing the Water Temperature calculated using the
prediction model
Figure 26. Prediction and forecast conceptual model
Figure 27. Virtual consumption centre configuration

List of Tables

Table 1. The list of predefined reports for the Final Prototype	30
Table 2. Relation db connections, integration of district heating data, data on electrical consumption	and
3D Energy Cadastre, Turin pilot, the 32 public owned buildings	32
Table 3. Fields description and the metadata, electrical consumptions IREN db	33
Table 4. Relationship between the district heating database, electricity consumption database and 3d	
energy cadastre, Coppino school, Colombo str 36	33
Table 5. A-B Available data for the forecasting model	37

Abbreviations

- API Application Programming Interface
- CAS Central Authentication Service
- FTP File Transfer Protocol
- GUI Graphical user interface
- JSON JavaScript Object Notation
- MDB Monitoring database
- REST Representational State Transfer
- SQL Structured Query Language
- SSO Single Sign On

1 Introduction

This deliverable report presents work done in the final integration phase of the NRG4CAST Toolkit. Specifically Deliverable D6.5 was focused on the integration of several new software components, i.e. User & Role Management as well as the components developed as a result of work packages WP4 and WP5 (Situational Awareness, Knowledge Formalization, Knowledge-driven Planning & Optimization components). Also, significant effort has been made to provide a unified way to the users to access and be authorized to the several components of the NRG4CAST Toolkit (Single Sign On & Role-based Access Control).

The Sensor Registry & Consumption Centre Configuration / Report Management & Real-time Visualization components have been implemented following a modular UI Toolkit approach enabling fast prototyping and integration of new pilots, objects and reporting functionalities. Summaries of the information stream are easily provided by the Monitoring database which provides a Generic SQL API available to the Monitoring GUI already from the 2nd year prototype of the NRG4CAST Toolkit.

Further, more work has been done on the specification and refinement of the several pilot contexts (Miren, FIR, Turin, NTUA and IREN), with regard to the reporting and forecasting functionalities. Last but not least, the Sensor Registry & Consumption Centre configuration component has been enhanced with the functionality to create Virtual Consumption Centres in the context of a virtual pilot which corresponds to the integrated city scenario which incorporates and combines consumption data from different NRG4CAST objects (buildings, lamps, charging stations, traffic sensors, etc.).

The structure of the remainder of this deliverable report is organized as follows:

Section 2 presents an updated view of the NRG4CAST Toolkit Architecture presenting a high-level view of all the components, their position and interaction.

Section 3 describes the solution followed in order to provide a unified Single Sign On and Role-based Access Control functionality to the users of the Toolkit.

Sections 4, 5, 6, 7, 8, 9 and 10 present the software components of the NRG4CAST Toolkit. In the sections new components are described on a high level (Section 4: User & Role Management, Section 7: Knowledge Formalization, Section 9: Knowledge-driven planning & optimization, Section 10: Situational Awareness). In the case of components formerly developed (Sections 5, 6, 8), information presented pertains to new and updated functionalities.

Section 11 presents updated descriptions with regard to the different pilot scenarios supported by the NRG4CAST Toolkit with focus on the goals for the 3rd year of the project. The virtual integrated city scenario approach is also briefly presented.

Section 12 concludes the deliverable report with a brief summary of its achievements.

2 NRG4CAST Toolkit Architecture

The architectural diagram presented in Figure 1 is an update and refinement of the architecture specification presented in Deliverables D5.1 and D6.4 [1],[2]. The new architectural diagram contains components developed during the 3rd year of the project such as User & Role Management, Knowledge Formalization and Situational Awareness components, their position and interactions with the other components of the system.

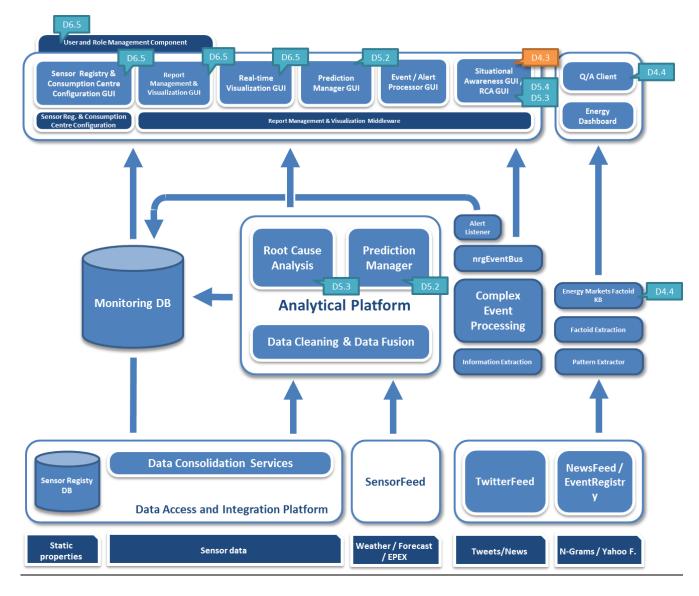


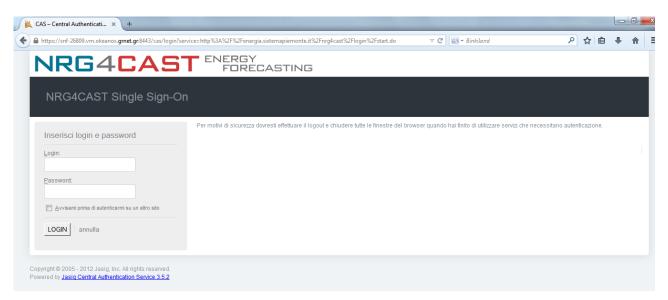
Figure 1. NRG4CAST Toolkit Architecture [1]

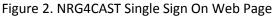
Figure 1 marks existing components which were enhanced for the Final Integrated NRG4CAST Toolkit in Deliverable D6.5 as well as all the new components which were developed in various deliverables of the 3rd year (D4.3, D4.4, D5.2, D5.3, D5.4) and have been integrated into the Toolkit.

3 Single Sign-On and Role-based Access Control

3.1 Single Sign On

The users of the NRG4CAST Toolkit should access the multiple components in a unified way providing credentials only once. In order to do that a Single Sign On mechanism has been implemented.


In order to implement the Single Sign On mechanism we have reviewed and evaluated a number of Open Source Single Sign On frameworks:


- WSO2 Identity Server
- OpenSSO
- JOSSO
- Central Authentication Service

We finally selected the Central Authentication Service (CAS) solution according to the following criteria:

- 1. Ease of use
- 2. Wide usage
- 3. Good support and documentation
- 4. Cross-platform client support: Java, .NET, PHP, Perl, Python, Ruby, etc
- 5. Direct industrialization (Apache license)

From the criteria presented above the most important one have been 4 (Cross-platform support) and 5 (Apache License) due to the fact that the NRG4CAST components have been developed in different platforms and the need to easily commercialize the NRG4CAST prototype.

3.1.1 Central Authentication Service

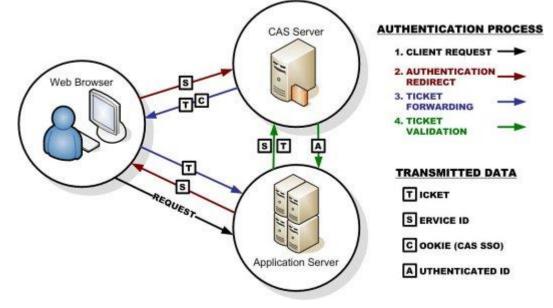


Figure 3 presents the authentication flow of a User to a component web front-end.

Figure 3. CAS Authentication flow (adopted from CAS documentation)

- 1. The user attempts to access the NRG4CAST component's Web Server.
- 2. The component redirects it to CAS. CAS validates the user's authenticity by checking his/her username and password against the User/Role database (Figure 4)
- 3. If the authentication succeeds, CAS returns the user to the NRG4CAST component, passing along a security ticket.
- 4. The component then validates the ticket by contacting CAS over a secure connection and providing its own service identifier and the ticket. CAS then gives the component trusted information about whether a particular user has successfully authenticated.

3.2 Role-based Access Control

After a user accesses a component he must be presented with the appropriate User Interface and acquire authorization to specific services and functionalities according to his/her role in the NRG4CAST Toolkit.

The CAS service is only responsible for authentication. Role-based access control is performed internally by each separate component due to divergent deployment platforms. Each component retrieves the security ticket concerning the authenticated username and provides or rejects access to relevant functionalities **autonomously**.

Access control to the functionalities of each component proceeds with the retrieval of the role of the user and its authorization with regard to certain tasks and the relevant role menu. This information is retrieved by the User/Role database through a REST Application Programming Interface implemented for this purpose which fetches relevant data.

3.2.1 User/Role Database

The User/Role database has been implemented in a Postgres database server at 83.212.107.133:5432. Figure 4 presents the schema of the User/Role database.

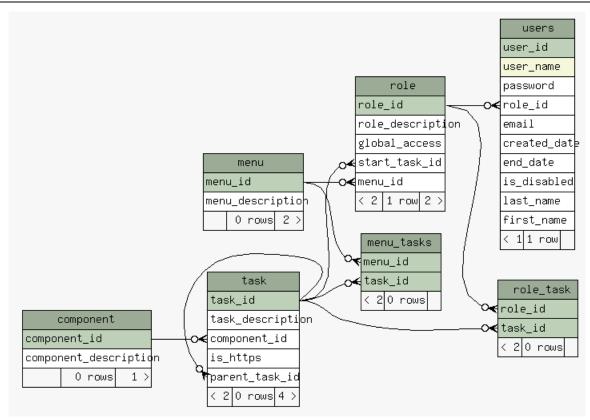


Figure 4. User/Role Database

According to the schema above a user has one exclusive role in the NRG4CAST Toolkit. Each role is connected with a specific menu and a set of tasks. Each task belongs to a specific component. When the User selects a menu the contents of the menu_tasks table are retrieved and displayed. Any task which is not accessible to the user according to his/her role and the data in role_tasks table can be filtered out.

Further, a role can have the flag global_access turned on in order to have a Global Administrator role.

The design of the database conforms to the National Institute of Standards and Technology (NIST) Rolebased Access Control standard. (<u>http://csrc.nist.gov/groups/SNS/rbac/</u>).

3.2.2 Role REST API

The REST API for the retrieval of roles is available in: <u>http://snf-26809.vm.okeanos.grnet.gr:9080/nrg-user-auth/v1/users/</u>

```
[{"userId":"admin","username":"admin","email":"admin@
nrg4cast.org","lastName":"Admin","firstName":"Admin",
"role":{"roleId":"admin","roleDescription":"Global
administrator
role","globalAccess":true,"menu":null,"startTask":{"t
askId":"admin_viewmap","taskDescription":"View
map","component":{"componentId":"nrg_admin_tool","com
ponentDescription":"NRG4CAST web administration
tool"},"children":[],"https":null},"tasks":[{"taskId"
:"admin_viewmap","taskDescription":"View
map","component":{"componentId":"nrg_admin_tool","com
ponentDescription":"NRG4CAST web administration
tool"},"children":[],"https":null},"tasks":[{"taskId"
:"admin_viewmap","taskDescription":"View
map","component":{"NRG4CAST web administration
tool","children":[],"https":null}]},"disabled":null}
]
```

Figure 5. Role REST API JSON response

Figure 5 depicts the response of the REST API when only one user (admin) and role (Global administrator) exist in the database.

3.2.3 Single Sign On to the NRG4CAST monitoring web front-end

The front end web application of the NRG4CAST project uses the Central Authentication Service (CAS), a single sign-on protocol for the web. It allows user to access a multiple applications providing user id and password just once. Once authenticated by any of the NRG4CAST Toolkit components, the user will have access to other system components secured with this permission.

Any access to the Report Management & Visualization and Real time Visualization Components GUI should be made only by authenticated users. Non-authenticated users are redirected to the NRG4CAST CAS web application requesting authentication. CAS validates the user authenticity by checking a username and password against a database. If login is successful, the user will be automatically redirected to the NRG4CAST welcome page. All the applications associated to this certain user id, role id and task id are listed under the "Available applications" menu (Figure 6). After choosing the application from the list, the user will be redirected to the Report Management & Visualization and Real time Visualization Components GUI.

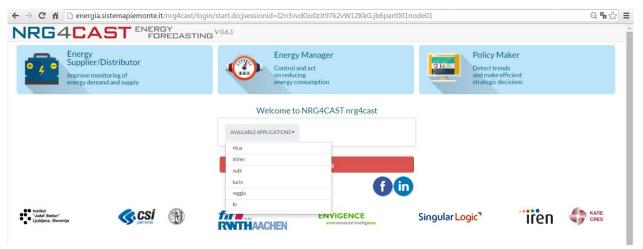


Figure 6. NRG4CAST Toolkit welcome page, available applications for the "super user" profile

NRG4CAST Toolkit manages a number of user profiles with different levels of permissions through the unique service. CAS then gives the Report Management & Visualization and Real time Visualization GUI trusted information about whether a particular user has successfully authenticated and what are the roles associated with this particular user. Based on the roles, the web application allows or doesn't allow certain functions.

In particular, basic and advanced users and associated roles have been created for each pilot as following:

- reggio-manager, reggio-guest
- ntua-manager, ntua-guest
- turin-manager, turin-guest
- miren-manager, miren-guest
- fir-manager, fir-guest (Figure 7)
- nubi-manager, nubi-guest.

← → C ㎡ 🗋 en	nergia.sistemapiemonte.it	/nrg4cast/login/	'start.do;jsessionid=PvtI40	Q50erl5kcnNwiXm+xRZ.jb6part00	1node01		Q 🖬 🖒
NRG4C	AST ENERG	GY RECASTING	V 0.6.1				
Impro	rgy olier/Distributor we monitoring of y demand and supply		Control on reduc		Policy N Detect tre and make strategic d	ends efficient	
			Welcome t	o NRG4CAST fir-guest			
			AVAILABLE APPLICATIONS -				
			fir				
				nrg4cast.org			
				Ð	n		
Institut "Jožef Stefan" Ljubljana, Slovenija	CSI	Ð	RWTHAACHEN	ENVIGENCE environmental Intelligence	Singular Logic [®]	iren	KARE CRES

Figure 7. NRG4CAST Toolkit welcome page, available application for the fir-guest profile

Basic user (guest) provides users with the rights necessary to operate all the GUI functions except for an Advanced Search (Figure 8). Furthermore, *Advanced user* (manager) has an access for all the basic and advanced GUI functionalities including Advanced Search and SQL query tool. Both base and advanced users are allowed to operate only within the pilot of competence.

The "super user" profile has been created to allow the system tests and developments. This system administrator user has all the advanced user rights and operates within all the NRG4CAST pilots.

Figure 8. Report Management & Visualization and Real time Visualization GUI, basic user fir-guest (all the GUI functions except for the Advanced Search and SQL query tool

4 User & Role Management Component

The User & Role Management component is responsible for the management of users and roles within the NRG4CAST Toolkit. The User & Role Management component consists of the User & Role database which was presented in Section 3.2.1, the Role REST API which was presented in Section 3.2.2, as well as the User & Role Management GUI.

Figure 9 presents the Graphical User Interface for the User & Role Management component.

Ν	RG4CAST	ENERGY FORECASTING			♥ Pilot: NTUA Logged in as admin ▼
۰	Roles				
	ID	Description	Menu	Start task	Actions
ه (admin	Global administrator role		admin_viewmap	00
쓸 •	o 🚢 Users o 🎬 Roles	VIEW_FIR_ADVANCED			
*	o ✿ Components o ■ Tasks	VIEW_FIR_BASE			
	o 🛅 Menu	MIREN_ADVANCED			
	MIREN_BASE	MIREN_BASE			08
	NRG4CAST_MASTER	master admin			
	NTUA_ADVANCED	NTUA_ADVANCED			
	NTUA_BASE	NTUA_BASE			

Figure 9. User & Role Management GUI

The User & Role Management GUI is accessible through: <u>http://snf-26809.vm.okeanos.grnet.gr:9080/</u> with credentials: vb /vb (username/password).

The User & Role administrator can insert/update/delete users, roles, components, tasks, menus.

Sensor Registry / Consumption Centre Configuration Component

The Sensor Registry & Consumption Centre Configuration component has been presented in Deliverable D6.4 [2]. In this section, we summarize updates and enhancements implemented in the 3rd year.

					9 Pilot: NTUA	Logged in as admin 🔻			
🔹 ntua map	Object GEN-EDRES								
	Basic data Building								
O + yes Keeper	Object type BUILDING								
CEMEDRES ×	Statical state 🗹								
PART AND	Nodes of GEN-EDRES	Nodes of GEN-EDRES							
and the second	Node ID	Name	Latitude	Longitude	Actions				
The Lorentee	ntua-BUILDING-GEN-EDRES-1-energy	ntua-BUILDING-GEN-EDRES-1-energy	37.976372	23.783326	28 0				
eto ante	ntua-BUILDING-GEN-EDRES-1-power	ntua-BUILDING-GEN-EDRES-1-power	37.976372	23.783326	080				
	ntua-BUILDING-GEN-EDRES-2-energy	ntua-BUILDING-GEN-EDRES-2-energy	37.976372	23.783326	280				
Object actions	ntua-BUILDING-GEN-EDRES-2-power	ntua-BUILDING-GEN-EDRES-2-power	37.976372	23.783326	280				
	-					0			
						08			

Figure 10. Sensor Registry & Consumption Centre Configuration Component

A REST API has been implemented for the configuration of the consumption centre / object / node / sensor hierarchy in the monitoring database performing:

• Allocation of consumption centres per pilot

5

- Setup of object hierarchy, including buildings, building parts, lamps, production plants, substations, and other objects per consumption centre
- Assignment of location information for each object
- Setup of data sources per node / sensor & sensor type allowing information to be gathered from disparate sources.

Further, a generic streaming mechanism has been implemented replacing the ad hoc streaming mechanism developed in the first 2 years of the project which supports:

- Arbitrary scheduling of data collection per each node
- Retrieval of input from various sources via extensible modular architecture
- Currently implemented sources:
 - CSV files from remote FTP, customizable with regards to column definitions and timestamp format,
 - Custom Excel files from remote FTP
 - o Web service invocation, including dynamic variables assignment
- Tracking of all scheduled streaming jobs and differential data retrieval, as long as this is supported by the data source
- Batching allows scalable retrieval, no matter how large the source dataset is

Last but not least, a UI Toolkit implemented using the angular.js framework is implemented according to the requirements of the DOW:

• Multi-tenant implementation, to support multiple pilots in one instance of the web administration tool,

- View and edit consumption centre hierarchy on the map view,
- Browse and select from the "tree-view" of the pilot hierarchy,
- Setup all types of objects supported,
- Component-based architecture which allows easy extension of view & edit capabilities with new object types,
- Streaming configuration via configuration templates with support for multiple streaming implementations.

Through the component many hundreds of new sensors have been integrated for the FIR, NTUA and TURIN pilots.

6 Report Management & Visualization / Real-time Visualization components

The Report Management & Visualization and Real-time Visualization Components have been described in detail in the Deliverable D6.4 [2]. These two NRG4CAST Components are tasked with visualization of historical and real-time data coming from different sensors and visualization of real time information and forecasts related to NRG4CAST objects, consumption centres, nodes and sensors, metadata, and data related to external features.

During the 3rd year of the project functionalities of the Report Management & Visualization Component and Real-time Visualization Component were refined. The viewer and the reports became more complex. This Chapter describes the development and integration carried out during the last year of the project.

The real time alerting is now available within the Real-Time Visualization GUI (Figure 11). The NRG4CAST alarms were classified as follows:

- technical alerts (broken sensors, no data etc.)
- economic alerts
- environmental alerts
- energy alerts.

Moreover an alarm level concept has been introduced to classify alerts as a notice, warning, or alarm. Each alert is referred to a certain object. All the alerts are geo-referenced and are visualised on the map in real time (Figure 12).

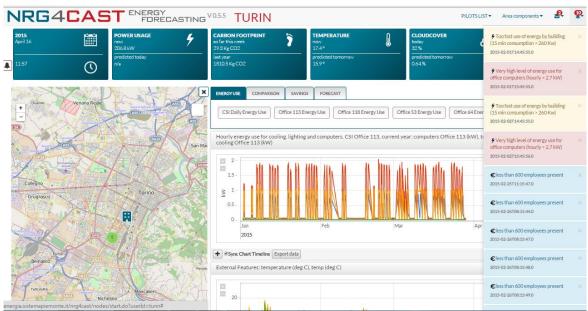


Figure 11. Visualisation of alerts in real time, Turin pilot

Deliverable 6.5



Figure 12. Georeferenced alerts in real time, NTUA pilot example

It is possible to view the system historical alerts within the left corner of the GUI (Figure 13).

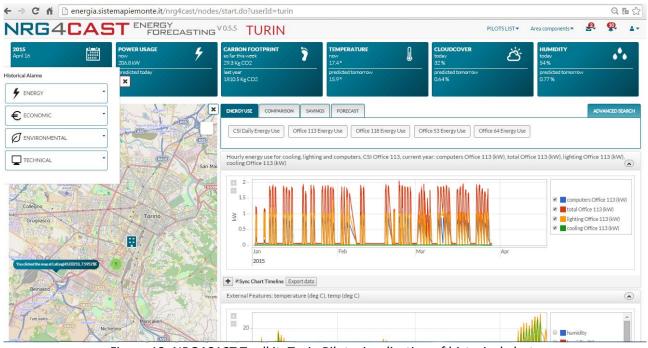


Figure 13. NRG4CAST Toolkit, Turin Pilot, visualisation of historical alerts

Furthermore, the situational awareness GUI has been integrated within the Report Management & Visualization and Real-Time Visualization GUI (please refer to the Chapter 10 for details).

The NRG4CAST Toolkit is now protected by an authentication system (please refer to the Chapter 3 for details). Any access to the Report Management & Visualization and Real time Visualization Components GUI can be made only by authenticated users.

During the 3rd year of the project a significant number of new sensors were integrated within the pilots' context (Figure 14).

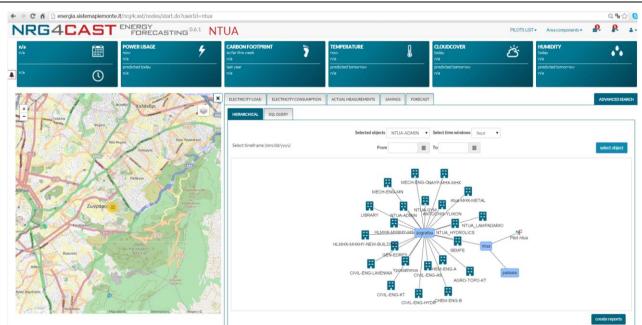


Figure 14. Hierarchical search tool, NTUA pilot example, objects visualisation

Figure 15. Georeferenced objects visualised on the map, NTUA pilot example

Furthermore, an SQL query tool has been added within the Advanced Search tool of the Report Management and Visualization Component (Figure 16). The central data repository integrating all the data residing in the NRG4CAST Toolkit is the Monitoring database. The Monitoring database is queried by the Monitoring component either in the case of pre-defined reports or in the case of the creation of on-the-fly complex SQL queries which can yield very useful results. For example, the total consumption of all the objects in a consumption centre or in a pilot may be calculated and presented on a time series through the appropriate SQL command.

	1CAST	FORECASTIN	1G ^{0.6.1} TU	RIN									PILOTS LIS	T • Area compo	nents • 🔤 • 👰	ţ.
n/a n/a			4	CARBON FOOTPRIN so far this week n/a	T	7	now n/a	ERATURE		1	CLOUDCOVER today rv/a		Ö	HUMIDITY today ry/a		••
		redicted today 91.5 kW		lest year n/a			predic ri/a				predicted tomorrow rv/a			predicted tomorr n/a		
20	-XXP		Set X	ENERGY USE COM	PARISON 5	AVINGS	FORECAST	1							ADVANCE	DSEA
-	w Venaria Reale		4-	HIERARCHICAL	QL QUERY											
GHE		F 1	AL.	SELECT * from alar	m where pilot_i	id=' <u>turin</u> ' (ORDER BY tim	e_stamp DE	SC limit 10							
nezza		XXX	San Mauro Torini													_
hat	No Carl	EVIZ													sear	rch
Collegn	· ·····	XANC.	J.C.	message	id	pilot_id	alarm_type		alarm_level				time_window		location_string	-1
ne vica	asco	Torino		less than 600 employees present	1267111	Turin	economic	presence	notice	0.0	turin-building- CSI_BUILDING_Presence- employeesPresence	0.0	null	1446127441000	turin-building- CSI_BUILDING_Presence	e
Grugi		H //	232	less than 600 employees present	1267110	Turin	economic	presence	notice	0.0	turin-building- CSI_BUILDING_Presence- employeesPresence	0.0	null	1446127440000	turin-building- CSI_BUILDING_Presence	e
	Z	NIL SA	121							0.0	turin-building-	0.0	null	1446127439000	turin-building-	
		112		less than 600 employees present	1267109	Turin	economic	presence	notice	0.0	CSI_BUILDING_Presence- employeesPresence	0.0			CSI_BUILDING_Presence	6

Figure 16. Advanced search SQL query tool, direct connection with the NRG4CAST monitoring database

Moreover, all the pilots were refined during the 3rd year of the project and FIR pilot functionalities were integrated within the NRG4CAST Toolkit.

7 Knowledge Formalization component

The Knowledge Formalization Component has been described in detail in Deliverable D4.4 [3]. The component has been evaluated in the work, reported in Deliverable D5.2 [4]. Evaluation has not shown any promising modelling/prediction results with the extraction of additional modelling features of textual data. The prototypes are running separately and should be used as a basis for further research.

Further research should focus on:

- refining the set of textual data sources
- improving the methods for evaluation of suitability of extracted features for modelling

The process has been coined with the term *nowcasting* and it is still an active research topic, with only partial results, that can be used for production purposes.

8 Prediction Manager

The Prediction Manager has been described in detail in Deliverables D3.1 [5] and D5.2 [4]. Models for all the use cases have been constructed, analysed, and pushed to production. Predictions are being generated in almost real time and are pushed (integrated) into Monitoring database for visualization and further analysis through different components of NRG4CAST GUI.

The work has been driven by the data approach from the beginning. An independent module that is able to process multivariate heterogeneous streaming data has been developed within the project. Results have been evaluated by expert users and the module is already scheduled to be reused by other projects.

9 Knowledge-driven Planning & Optimization component

The Knowledge-driven Planning and Optimization component has been started in Deliverable D4.3 [6] and was rewritten and finished within work reported in Deliverable D5.3 [7]. It represents a novel approach with potential for becoming a valuable tool for energy system analysis. However some pioneering work has been completed within the NRG4CAST project and therefore potential usability value has not yet been reached.

The system is integrated into the platform via a SSO approach and is running as an independent instance for each of the selected use cases.

10 Situational Awareness component

Situational Awareness component has been described in detail in Deliverable D5.4 – Situational Awareness Services [8].

NRG4CAST team has implemented situational awareness services for a number of project pilots and usecase scenarios. This component is based on the user context and provides related information about the environment to be used in the reasoning process. The NRG4CAST Toolkit utilizes general domain knowledge in order to produce explanations with regard to the results of the reasoning process. Further, personalized rules and user input constitute the basis for the NRG4CAST Toolkit situational awareness services.

In particular, the NRG4CAST situational awareness services have been designed on the baseline of the monitoring and alerting services. The situation is assessed by the NRG4CAST Toolkit through the utilization of sensor information about the environment. The assessment process entails the comparison of an individual user context with the environmental sensory information. Sensory data are inputted to the model which interprets them with regard to an individual user context. The future state of the environment is then anticipated by the model.

The situational awareness services are built on top of the monitoring and alerting services and are closely connected to basic real-time decision support and reasoning environment of the project. The situational awareness GUI allows for anomaly awareness, shows "monetary" savings, and highlights high energy consumption and anomalously high temperatures. It is possible to analyse the energy consumption of an overall complex consumption centre, such as an University Campus, a city, and a municipality area. The situational awareness GUI has been integrated within the Report Management & Visualization and Real-time Visualization Components GUI.

11 NRG4CAST Final Integrated Prototype Pilot Contexts

11.1 Miren pilot

We tested the NRG4CAST components with street classification features. Depending of the circulation of the vehicles on the selected street, we try to calculate the impact of the dynamic road classification. The information about the street classification would be sent back to street light backend every 15 minutes, if changes occur. System reacts automatically every 15 minutes with the intervention on the dimming profile of the desired light or group of lights. Today street light systems don't have such automatic control and it is not possible to control if street lights all of the time reach the regulations values.

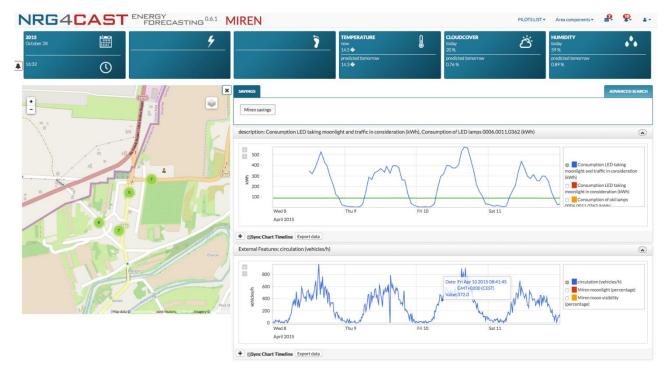


Figure 17. NRG4CAST web front-end – Miren case, showing the realtime consumption and comparable to real time traffic

We use the same data from the street lights as in the 1st prototype, which are the following:

- ELCN Report No
- ELCN Report Summa Value
- ELCN Report Average Value, total / samples
- ELCN Samples Since Last Report,
- ELCN Max Value, The max reading value during the measurement period
- ELCN Min Value, The min reading value during the measurement period
- ELCN Dim Level Ch1, DIm level for Ch1 (only ch1 used at the moment)
- ELCN Dim Level Ch2, not used
- ELCN Calculated Consumption
- HopCounter,
- SequenceNo,
- Measured Consumption

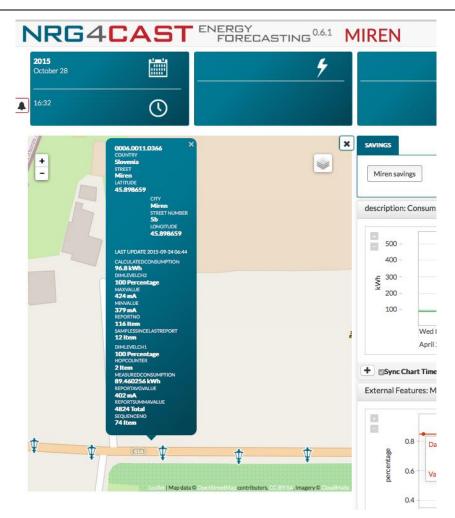


Figure 18. NRG4CAST web front-end – Miren case, showing the last data from the street light sensors

We add additional data:

- traffic circulation, which is calculated every 15 minutes from the traffic sensor
- weather forecast from the external source
- moon phase depending on the geographical data

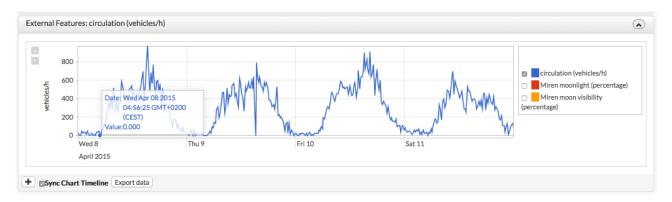


Figure 19. NRG4CAST web front-end – Miren case, showing the real time data for vehicles circulation on the selected street

We found out that with the implementation of the dynamic road classification we could achieve additional saving up to 10% and we can guarantee to the customer that the luminance of the street satisfies the street classification regulations.

11.2 FIR Pilot

As stated in chapter 11.2 in Deliverable 6.4 [2], the FIR pilot focuses on the prediction of energy demand of electric vehicles. By doing so, there are two main use cases. On the one side, the energy demand prediction can be used by grid providers to identify peak loads and therefore prevent grid failure and damage. This prognosis helps to reduce the maintenance costs. On the other side, the information can be used by charging station providers to choose profitable location to set up a charging station. Due to the low amount of electric vehicles on the street, this information gets more important since the return of an investment in a charging station can easily exceed the charging station costs if it is located in a pool location.

Further details are explained in Deliverable 6.4 [2], chapter 11.2.

11.3 NTUA pilot

NTUA installed the following meters for electrical energy consumption measurements as well as for the thermal comfort conditions:

- 33 electricity meters SIEMENS SENTRON PAC3200, PAC3100
- 16 electricity meters Schneider Electric PM3250
- 4 temperature sensors & relative humidity sensors: Siemens Q-Series Outdoor Air Relative Humidity and Relative Humidity & Temperature Sensors QFA3171D
- 4 lux meters ALRE brightness sensor AHS/O-10

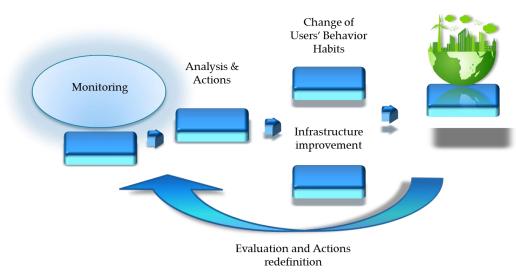


Figure 20. NTUA Pilot's scope

The overall scope of this pilot was not only the campus monitoring but also the change of user behavior habits, the energy savings actions redefinition and evaluation as well as the development of Energy Performance Certificates, the conduction of Energy Service Contracts and finally the change of load profile by using different tariffs affecting the demand response of NTUA campus.

Energy Saving Senate Committee of NTUA was responsible for the submission of several national proposals for energy saving measures applied to NTUA campus buildings. The Energy Efficiency Certificates of Campus buildings were necessary to be conducted for the submission of these proposals. NRG4CAST Toolkit reduces the time and costs of Energy Performance Certificates.

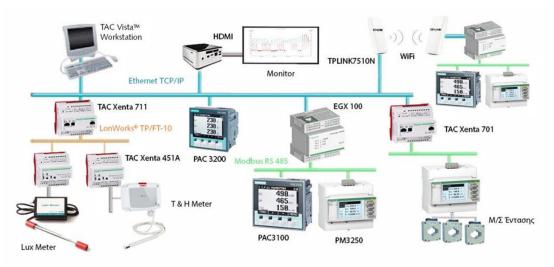


Figure 21. NTUA Pilot's systems' topology

Several energy efficiency improvements as well as actions have been decided by the facilities management after the overall installation and the analysis of the individual energy consumptions for lighting and HVAC systems through the NRG4CAST Toolkit.

The aforementioned actions being decided and taken place are the following:

Scenario 1: Lighting Schedule according to daylighting

This action took place for a week in two Lecture Room Buildings of approximately 2000 m² each. It included the management of lighting schedule so as lecture rooms lighting to be turned off when daylighting and use allow. Students and faculty staff were encouraged to turn off lights when exiting unoccupied rooms.

This action was decided due to High Daily Lighting Consumption according to the relative meter installed for the metering of lighting consumption as well as the lighting load prediction through the NRG4CAST Toolkit.

The yearly energy savings estimation for the whole Campus is 1052 MWh, thus approximately 85000 Euros/year.

Scenario 2: Energy Savings Campaign – Turn off Computers and printers

This action took place for two weeks in the Campus Administration Building of approximately 2500 m². It included the shutting down of all computers and printers after the work hours.

This action was decided due to High Level Base Load according to the relative meters.

The yearly energy savings estimation for the whole Campus is from 350 to 800 MWh/year, thus approximately from 20000 to 48000 Euros/year.

Scenario 3: Changing schedule of Lecture Rooms

This action took place for a week in the Lecture Rooms of two buildings of approximately 4000 m^2 . It included the changing schedule of lecture rooms.

This action was decided due to High Daily Energy Consumption according to the relative meters.

The yearly energy savings estimation for the whole Campus is approximately from 570 to 1800 MWh/year, from 34300 to 105000 Euros/year.

Scenario 4: Night Cooling

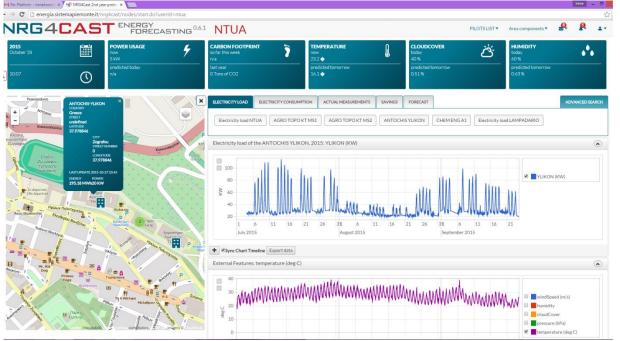


Figure 22. NRG4CAST web fron-end - NTUA Pilot, showing the demand from Antochis Ylikon Building during summer

This action took place for a week in the Laboratory Building N of Mechanical Engineers of approximately 5000 m³. It included the night ventilation during the last week of July.

The yearly energy savings estimation for the whole Campus is approximately from 600-1000 MWh/year, 37000-60000 Euros/year.

Table 1. The list of predefined reports for the Final Prototype

- WHEN TO REPORT: daily, weekly, monthly and yearly basis
- WHAT TO REPORT:
 - o electricity load (kW) of Schools (i.e. School of Mechanical Engineering)
 - electricity consumption (kWh, kWh/m2) of the whole Campus
 - o electricity consumption (kWh, kWh/m2) of Schools (i.e. School of Mechanical Engineering)
 - o electricity consumption (kWh, kWh/m2) of each Building separately.
 - lighting consumption (kWh, kWh/m2) of a building.
 - HVAC energy load (kW, kW/m2) of a building.
 - $\circ~$ thermal comfort level of the office: The Dry bulb temperature C, Relative Humidity% and Illuminance lux.

- HOW TO REPORT:
 - BUILT-IN REPORTS: on a monthly basis. It includes the electricity consumption and demand of the whole Campus (kWh/month, kW/month) and each School (kWh/month, kW/month) separately. It shows top-5 Schools energy consumers (kWh/m2) of the month.
 - Correlation weather and consumption (data on weather: Athens: OWM and WWO stations (Athens)). GRAPHS SHOWING: Weather - Current thermal comfort in a psychrometric diagram
 - Correlation occupancy and consumption (data on occupancy: not specified yet.
 - Last measure visualization. GRAPHS SHOWING: Current thermal comfort in a psychrometric diagram
 - Available predictions, time window for predictions: weather forecast, data sources. WHEN TO PREDICT: daily basis. WHAT TO PREDICT: Electricity consumption (kWh, kWh/m2) of Schools (i.e. School of Mechanical Engineering), lighting consumption (kWh, kWh/m2) of a building, HVAC energy load (kW, kW/m2) of a building. HOW TO PREDICT: The platform produces energy forecasting reports for each School and lighting and HVAC energy forecasting reports of a building.

11.4 Turin Pilot

The main goal of Turin Pilot is a reduction of energy consumption in the CSI Headquarters and energy consumption monitoring and savings planning within the 32 public owned buildings in Turin, Italy.

During the 3rd year of the project all the predefined reports for the Turin pilot were implemented. There is a possibility to compare energy consumption and energy costs, to monitor and predict energy savings (Figure 23). The function to calculate Carbon footprint for the CSI building and the whole Turin pilot has been implemented within the Report Management & Visualization and Real-time Visualization GUI configuration system.

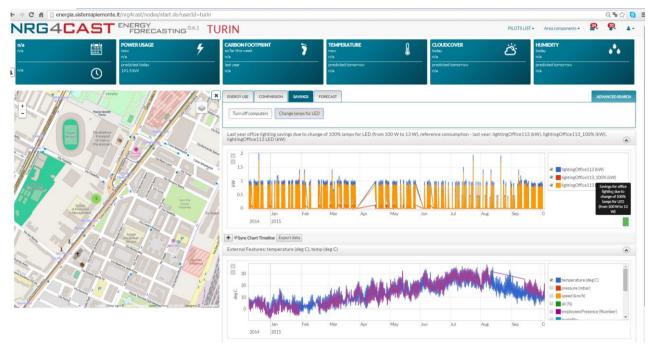


Figure 23. A set of savings reports, Turin pilot, NRG4CAST Toolkit

The data on electrical and thermal energy consumption for the 32 public owned buildings has been classified and integrated within the NRG4CAST Toolkit.

The data on electrical and thermal energy consumption for the 32 public owned buildings has been classified and integrated within the NRG4CAST Toolkit.

							Buildin		
POD IT020E001551	Supply 10500627	Contract 2106362	host ID	street		KEY	g ID	descr	HOST
22	36	9	11195,0 0	PALMIERI	58	VIA PALMIERI 58	78274	Elementary school Alfieri	BCT 440 SST 026 IP 22.6 VOL 34750 IND PALMIERI 58
IT020E000063	10500622	2106316						Elementary	
59	43	1	10663,0 0	COLOMBO	36	COLOMBO 36	65709	school Coppino	BCT 406 SST 148 IP 129.16 VOL 25280 IND COLOMBO 36
IT020E003579	10500606	2106161	Ū	COLONIDO	50	CORSO DUCA	03703	coppino	ber_400_551_140_ir_125.10_V0E_25200_inb_c62610inb0_50
94	32	3	10591,0	DUCA DEGLI		DEGLI		Maternity	BCT_414_SST_027_IP_129.167_VOL_5900_IND_DUCA_DEGLI_ABRUZZI
IT020E004477	10500539	2105463	0 11894,0	ABRUZZI	50 12	ABRUZZI 50 CORSO	65366	school	_50
11	49	9	0	FERRUCCI	2	FERRUCCI 122	79120	Offices	BCT_420_SST_006_IP_17.94_VOL_12575_IND_FERRUCCI_122
IT020E001467	10500614	2106241	10524,0		28	CORSO	00005	Professional	
82 IT020E006570	55 10500612	4 2106224	0	FRANCIA	5	FRANCIA 285 CORSO	80395	school	BCT_447_SST_010_IP_31.196_VOL_4400_IND_FRANCIA_285
82	80	0	12370,0	GALILEO	28	GALILEO			
IT020E001101	10500614	2106241	0	FERRARIS	8	FERRARIS 288 CORSO	2744	Swimming pool	BCT_063_SST_502_IP_29.50_VOL_3500_IND_GALILEO_FERRARIS_288
99	57	7	14338,0		22	ORBASSANO		Maternity	
			0	ORBASSANO	4	224	52998	school	BCT_055_SST_028_IP_28.99_VOL_5230_IND_ORBASSANO_224_26
IT020E001409 75	10500620 80	2106300 9	10977,0		19	CORSO PESCHIERA			
,,,	00	2	0	PESCHIERA	3	193	73407	Offices	BCT_426_SST_014_IP_30.34_VOL_30000_IND_PESCHIERA_193
IT020E002463 15	10500606	2106168	10850.0		20	CORSO PESCHIERA		Flomonton	
15	96	2	10859,0 0	PESCHIERA	38 0	380	80393	Elementary school	BCT 447 SST 124 IP 30.221 VOL 20430 IND PESCHIERA 380
IT020E001371	10500621	2106304				CORSO			
51	17	4	10741,0 0	DE ALBERTIS	22	D'ALBERTIS LUIGI 22	79732	Elementary school	BCT 430 SST 005 IP 16.150 VOL 11632 IND DE ALBERTIS 22
IT020E002340	10500606	2106165	Ŭ	DEFREDENTIO		VIA	75752	School	
02	66	1	10825,0	BARDONECCH	24	BARDONECCH	75520	Maternity	DOT 442 CCT 022 ID 20 404 VOL 22500 IND DADDONICCUIA 24
IT020E001341	10500613	2106234	0 10688,0	IA	34	IA 34	75530	school Maternity	BCT_443_SST_033_IP_30.194_VOL_33580_IND_BARDONECCHIA_34
22	82	4	0	BERTA	15	VIA BERTA 15	78271	school	BCT_420_SST_005_IP_129.179_VOL_14470_IND_BERTA_15
IT020E006982 48	10503414 55	2136350 8	10450,0	ROSTON	22	VIA BOSTON	F 2961	not found	DOT 022 SET 101 ID 21 142 VOL 2557 IND DOCTON 22 INT 7
40 IT020E006709	10500632	2106408	0 10198.0	BOSTON	22	22 VIA BRACCINI	53861	not found Municipality	BCT_033_SST_191_IP_21.143_VOL_3557_IND_BOSTON_22_int7
91	20	9	0	BRACCINI	4	4	466	Gym	BCT_420_SST_014_IP_31.91_VOL_8000_IND_BRACCINI_4
IT020E001337 89	10500616 01	2106256 6	10140,0 0	BRACCINI	63	VIA BRACCINI 63	78466	Maternity	BCT 421 SST 316 IP 28.80 VOL 4480 IND BRACCINI 63
IT020E001326	10500622	2106313	10342,0	BRACCINI	05	VIA BRACCINI	78400	school Elementary	DC1_421_331_310_IF_28.80_VOL_4480_IND_DRACCINI_03
07	19	7	0	BRACCINI	70	70	79517	school	BCT_421_SST_018_IP_31.150_VOL_34210_IND_BRACCINI_70
IT020E001337 88	10500621 55	2106307 6	10414,0 0	BRACCINI	75	VIA BRACCINI 75	78467	Maternity school	BCT_421_SST_016_IP_31.165_VOL_12200_IND_BRACCINI_75
IT020E000065	10500612	2106217	10111,0	Britteenti	75	75	/010/	School	
45	16	3	0	DEGO	6	VIA DEGO 6	23273	Offices	BCT_414_SST_026_IP_31.138_VOL_2957_IND_DEGO_6
IT020E001395 35	10500610 52	2106200 9	10804,0 0	DELLEANI	25	VIA DELLEANI 25	72067	Maternity school	BCT 429 SST 005 IP 21.12 VOL 15000 IND DELLEANI 25
IT020E001472	10500629	2106387	10882,0		11	VIA FATTORI		Maternity	
45 IT020E002313	98 10500607	8 2106175	0	FATTORI	3	113	76178	school	BCT_432_SST_024_IP_30.176_VOL_3350_IND_FATTORI_113
50	87	8	10835,0 0	FREJUS	21	VIA FREJUS 21	76437	not found	BCT 442 SST 014 IP 30.160 VOL 17953 IND FREJUS 21
IT020E002757	10500530	2105373	10973,0			VIA HUGUES	not		
08 IT020E001378	86 10500623	6 2106325	0 10179,0	HUGUES	10 14	10 VIA LANCIA	found	Gym	BCT_431_SST_002_IP_30.90_VOL_7316_IND_HUGUES_10
95	49	5	10179,0	LANCIA	14 0	140	79622	School	BCT_433_SST_004_IP_129.49_VOL_15115_IND_LANCIA_140SCUOLA _MEDIA_
IT020E001307	10500606	2106164	10885,0	LUSERNA DI		VIA LUSERNA		Elementary	BCT_442_SST_016_IP_30.146_VOL_19260_IND_LUSERNA_DI_RORA1
58 IT020E001464	55 10500623	0 2106325	0 10846,0	RORA	14	DI RORA 14 VIA MARSIGLI	76318	school	4
50	50	6	0	MARSIGLI	25	25	80544	School	BCT_432_SST_026_IP_30.218_VOL_17200_IND_MARSIGLI_25
IT020E004441	10500605	2106152	12380,0	MILLIO		1/14 MILLIO 25	c	0#	
60 IT020E004525	39 10500616	9 2106259	0 10897,0	MILLIO	20	VIA MILLIO 20 VIA MONTE	6026	Offices	BCT_421_SST_317_IP_25.182_VOL_5600_IND_MILLIO_20
45	32	5	0	ORTIGARA	95	ORTIGARA 95	79749	Offices	BCT_432_SST_027_IP_30.31_VOL_10200_IND_MONTE_ORTIGARA_95
IT020E001468	10500606	2106164	10839,0	POZZO	17	VIA POZZO	72644	Maternity	BCT_447_SST_125_IP_30.244_VOL_8200_IND_POZZO_STRADA_12_INT
42 IT020E006792	63 10500759	8 2107664	0 10910,0	STRADA	12 10	STRADA 12 VIA ROSSELLI	72644	school	_001
41	22	1	0	ROSSELLI	5	105	73060	not found	BCT_422_SST_028_IP_30.139_VOL_5608_IND_ROSSELLI_105_INT_007
IT020E002637 97	10500622 11	2106313 0	10883,0 0	STELVIO	45	VIA STELVIO	1537	Maternity school	BCT 432 SST 030 IP 30.185 VOL 3050 IND STELVIO 45
97 IT020E001395	10500623	2106327	10440,0	JIELVIU	45	45 VIA TOFANE	100/	301001	001_432_331_030_IF_30.103_V0L_3030_IND_31ELVIO_43
32	73	9	0	TOFANE	22	22	79606	School	BCT_429_SST_007_IP_21.56_VOL_34400_IND_TOFANE_22
IT020E001395 34	10500619 95	2106292 4	10814,0 0	TOFANE	28	VIA TOFANE 28	79683	Elementary school	BCT 429 SST 056 IP 21.37 VOL 17600 IND TOFANE 28
1T020E001346	10500623	4 2106326	10494,0	TOFAINE	20	28 VIA TOLMINO	12003	Maternity	0C1_429_331_030_IF_21.37_V0L_1/000_IND_10FAINE_28
49	59	5	0	TOLMINO	30	30	77546	school	BCT_424_SST_008_IP_129.148_VOL_3827_IND_TOLMINO_30
IT020E001346 50	10500623 24	2106323 2	10759,0 0	TOLMINO	40	VIA TOLMINO 40	77538	School	
30	24	۷	U	IULIVIIINU	40	40	11000	301001	BCT_424_SST_009_IP_20.114_VOL_17200_IND_TOLMINO_40

Table 2. Relation db connections, integration of district heating data, data on electrical consumption and3D Energy Cadastre, Turin pilot, the 32 public owned buildings

The metadata, field descriptions and an example of data on energy consumption available for the 32 public building in Turin is shown below:

POD	The POD is an alphanumeric code that uniquely identifies the point of withdrawal of electricity from the national grid.
INIZIO	Starting date of the period of interest (please consider only periods starting from the 1st day of the month, eg 1st August 2011)
FINE	End date of the period of interest (please consider only periods ending on the last day of the month, eg 31st August 2011)
Q.TA'	Active Energy consumption in the period (in kWh)
GRANDEZZA	Use the field ENERGIA ATTIVA only
TIPO CONSUMO	CERTO – Actual Consuption
	STIMATO – Estimated Consumption
DATA GRANULARITY	15 minutes
How often data is updated	Energy consumptions concerning the Turin Pilot will be collected in a .csv file and uploaded once a month on a url address (not FTP) to be communicated to the consortium as soon as possible.

Table 3. Fields description and the metadata,	electrical consumptions IREN db
---	---------------------------------

Furthermore, we provide an example of the relation between database on electrical energy consumption provided by partner IREN, database on district heating zabbix_db provided by IREN partner and 3D Energy Cadastre provided by CSI partner respectively for a Coppino school, Colombo str. 36.

Table 4. Relationship between the district heating database, electricity consumption database and 3denergy cadastre, Coppino school, Colombo str 36.

Field name	Value
POD	T020E00006359 (The POD is an alphanumeric code that uniquely identifies the point of withdrawal of electricity from the national grid)
Address	Via Colombo 36
ID Edifici	65709
Descrizione	scuola elementare Coppino + alloggio custode
HOST	BCT_406_SST_148_IP_129.16_VOL_25280_IND_COLOMBO_36
IP	46233129167
HOST ID	10663
Q.TA'	Active Energy consumption in the period (in kWh)
INIZIO	Start date of the period of interest (please consider only periods starting from the 1st day of the month, eg 1st August 2011)
FINE	End date of the period of interest (please consider only periods ending on the last day of the month, eg 31st August 2011)
GRANDEZZA	Use the field ENERGIA ATTIVA only
Consumption type	CERTO – Actual Consumption
	STIMATO – Estimated Consumption

The detailed monitoring and prediction provided by NRG4CAST Toolkit acts as the base for decision making on energy efficiency actions in the case of Turin pilot such as replacement of obsolete working stations with portable new generation computers in 2013 and Awareness Campaign in 2014.

The specific actions taken are the following:

- Involvement of employees
- additional focus on personal benefits
- informing employees on scientific / technical issues of energy saving and energy efficiency
- encouragement towards concrete action,

- maintaining Best practices and habits in time,
- accurate monitoring and alerting possibilities,
- monitoring of energy consumption in real time for a number of appliances
- prediction of energy demand lead to significant reduction of energy consumption

These actions led to the improvement of the CSI Headquarters energy performance by 27 percent.

11.5 Iren Pilot

NRG4CAST tool, tested through pilot NUBI and pilot Reggio Emilia (see Deliverable D6.4 for use-cases description, etc. [2]), was implemented basing on data resulting from information computed by an algorithm, that includes both data directly collected by sensors and other devices and inferred data, as described in the following.

It's important to notice that, not requiring further hardware components to be installed, the computational model developed for consumption prediction will allow a reduction in equipment costs, representing, thus, a strength from a market perspective.

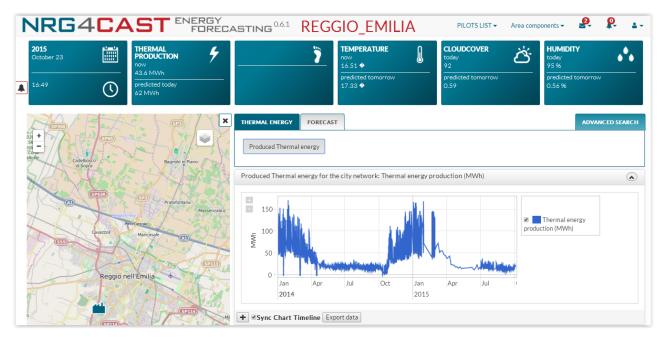


Figure 24. NRG4CAST web tool - Reggio Emilia Pilot, showing the Thermal Energy Production calculated using the prediction model

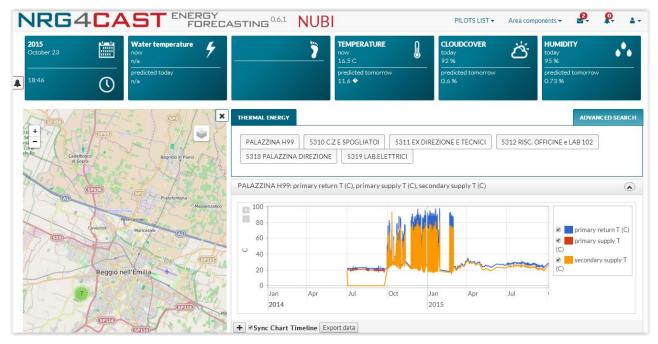


Figure 25. NRG4CAST web tool – Campus NUBI Pilot, showing the Water Temperature calculated using the prediction model

The energy consumption prediction model in the case of Campus Nubi pilot is described by Formula (1).

$$P = V * (T2-T1) * c$$
 (1)

where

P= Heating energy consumption (W);

V= Building volume (m³)

(T2-T1)= indoor - outdoor temperature difference (C°)

c= Energy rate coefficient (set to 38 – but further researchers on the coefficient are required. See Deliverable D5.2 [4])

The heating energy consumption which is predicted through the previous formula is used as an input for the prediction of the **Thermal Comfort Standard.** This standard is defined as the water temperature that needs to be supplied to the Campus Nubi building in order to keep a constant indoor temperature, as illustrated in Figure 26.

input	1	output
 ✓ Building volume (m³) ✓ Difference between indoor- outdoor temperature ✓ Energy rate coefficient (20-40 range) 	Prediction calculation	 Heating energy consumption
input • Heating energy consumption • Outdoor temperature • Secondary forward water temperature • Primary return water temperature • Indoor temperature	Forecast calculation	output • thermal comfort standard

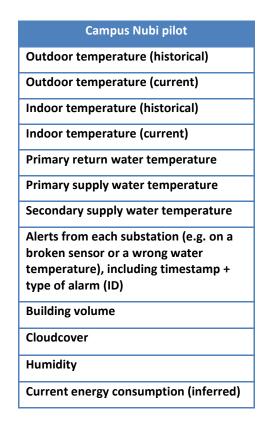
Figure 26. Prediction and forecast conceptual model

Summing up, the data implemented in the forecasting model for both Iren pilots are shown in the tables below.

Table 5. A-B Available data for the forecasting model

Reggio Emilia pilot

Data of DH production (historical)


Current data of DH production (current)

Outdoor temperature (historical)

Outdoor temperature (current)

Cloudcover

Humidity

11.6 Virtual Integrated Pilot

The NRG4CAST Toolkit has been enhanced with the ability to define a virtual pilot in order to support the integrated city scenario. Specifically, the Sensor Registry & Consumption Centre configuration component provides a UI for the combination of objects, nodes and sensors into virtual consumption centres (Figure 27).

NRG4CAST ENERGY FORECASTING			
Virtual Consumption Centre vbtest			
ENG-HYDR			

Figure 27. Virtual consumption centre configuration

Due to constraints of the NRG4CAST project, a predefined set of NRG4CAST objects containing a set of sensors has been selected. Then a virtual data stream is simulated through the creation of a virtual sensor which contains calculated average consumption in the set of the sensors. It's possible to calculate average consumption since aggregated sensor data in the Monitoring database are time aligned with known units of measurements.

The virtual consumption centre contains only the virtual sensors which is then streamed as a normal data source to the Analytical Platform in order to calculate predictions. Then the Real-time monitoring / Report Management components present forecasts with regard to the total consumption in the integrated city scenario.

12 Conclusions

The previous sections have presented in detail the work that has been performed with regard to the integration of all the software components into the Final Integrated NRG4CAST Toolkit and its final rollout.

The main results of this deliverable are the following:

- 1. The enhancement of the functionality of previously developed software components in accordance with the requirements of the different pilot scenarios.
- 2. The integration of new components: User & Role Management / Situational Awareness / Knowledge Formalization / Knowledge-driven planning & Optimization into the Final Integrated NRG4CAST Toolkit.
- 3. The design and implementation of a Single Sign On / Role-based Access Control mechanism and its integration into the NRG4CAST software components in order to achieve seamless authentication and authorization of the users.
- 4. The update and refinement of pilot scenarios specification.
- 5. The implementation of the virtual consumption centre configuration functionality in order to support the integrated city scenario which combines energy consumption data from sensors belonging to different isolated pilots.

The results of the validation and testing of the Final Integrated NRG4CAST Toolkit are going to be reported in Deliverable D7.5: Validation of final rollout which is going to be delivered on Month 36 of the project.

References

- [1]. K. Kenda et. al., *NRG4CAST Deliverable D5.1, Decision Support System and Reasoning Framework,* November 2014.
- [2]. T. Hubina et al., *NRG4CAST Deliverable D6.4, Real Time Monitoring Integration (2nd Prototype) Report,* November 2014.
- [3]. K. Kenda et al., NRG4CAST Deliverable D4.4, Knowledge Formalization Environment, May 2015.
- [4]. K. Kenda et al., *NRG4CAST Deliverable D5.2, Data Driven Prediction Methods Environment*, September 2015.
- [5]. K. Kenda et al., *NRG4CAST Deliverable D3.1, Modelling of the Complex Data Space*, NRG4CAST, November 2014.
- [6]. K. Kenda et al., NRG4CAST Deliverable D4.3, Root Cause Analysis, November 2014.
- [7]. K. Kenda et al., *NRG4CAST Deliverable D5.3, Knowledge Driven Planning and Optimization Services,* September 2015.
- [8]. T. Hubina et al., *NRG4CAST Deliverable D5.4, Situational Awareness Services*. NRG4CAST, September 2015.